ROBOTICS

COMPUTER VISION

CausalVQA: A Physically Grounded Causal Reasoning Benchmark for Video Models

June 11, 2025

Abstract

We introduce CausalVQA, a benchmark dataset for video question answering (VQA) composed of question-answer pairs that probe models’ understanding of causality in the physical world. Existing VQA benchmarks either tend to focus on surface perceptual understanding of real-world videos, or on narrow physical reasoning questions created using simulation environments. CausalVQA fills an important gap by presenting challenging questions that are grounded in real-world scenarios, while focusing on models’ ability to predict the likely outcomes of different actions and events through five question types – counterfactual, hypothetical, anticipation, planning and descriptive. We designed quality control mechanisms that prevent models from exploiting trivial shortcuts, requiring models to base their answers on deep visual understanding instead of linguistic cues. We find that current frontier multimodal models fall substantially below human performance on the benchmark, especially on anticipation and hypothetical questions. This highlights a challenge for current systems to leverage spatial-temporal reasoning, understanding of physical principles, and comprehension of possible alternatives to make accurate predictions in real-world settings.

Download the Paper

AUTHORS

Written by

Aaron Foss

Chloe Evans

Sasha Mitts

Koustuv Sinha

Ammar Rizvi

Justine T. Kao

Publisher

arXiv

Research Topics

Robotics

Computer Vision

Core Machine Learning

Related Publications

June 11, 2025

RESEARCH

COMPUTER VISION

IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments

Florian Bordes, Quentin Garrido, Justine Kao, Adina Williams, Mike Rabbat, Emmanuel Dupoux

June 11, 2025

June 11, 2025

RESEARCH

COMPUTER VISION

A Shortcut-aware Video-QA Benchmark for Physical Understanding via Minimal Video Pairs

Benno Krojer, Mojtaba Komeili, Candace Ross, Quentin Garrido, Koustuv Sinha, Nicolas Ballas, Mido Assran

June 11, 2025

June 11, 2025

ROBOTICS

RESEARCH

V-JEPA 2: Self-Supervised Video Models Enable Understanding, Prediction and Planning

Mido Assran, Adrien Bardes, David Fan, Quentin Garrido, Russell Howes, Mojtaba Komeili, Matthew Muckley, Ammar Rizvi, Claire Roberts, Koustuv Sinha, Artem Zholus, Sergio Arnaud, Abha Gejji, Ada Martin, Francois Robert Hogan, Daniel Dugas, Piotr Bojanowski, Vasil Khalidov, Patrick Labatut, Francisco Massa, Marc Szafraniec, Kapil Krishnakumar, Yong Li, Xiaodong Ma, Sarath Chandar, Franziska Meier, Yann LeCun, Michael Rabbat, Nicolas Ballas

June 11, 2025

April 17, 2025

COMPUTER VISION

Perception Encoder: The best visual embeddings are not at the output of the network

Daniel Bolya, Po-Yao Huang, Peize Sun, Jang Hyun Cho, Andrea Madotto, Chen Wei, Tengyu Ma, Jiale Zhi, Jathushan Rajasegaran, Hanoona Rasheed, Junke Wang, Marco Monteiro, Hu Xu, Shiyu Dong, Nikhila Ravi, Daniel Li (FAIR), Piotr Dollar, Christoph Feichtenhofer

April 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.